
CHAPTER 1.3

THE OPERATORS

Dr. Shady Yehia Elmashad

Outline

1. Arithmetic Operators

2. Accumulation Operators

3. Incremental/ Decremental Operators

4. Equality/Relational Operators

5. Logical Operators

6. Confusing Equality (==) and Assignment (=) Operators

1. Arithmetic Operators

Operator Symbol Action Example

Addition + Adds operands x + y

Subtraction - Subs second from first x - y

Negation - Negates operand -x

Multiplication * Multiplies operands x * y

Division / Divides first by second x / y

(integer quotient)

Modulus % Remainder of divide op x % y

1. Arithmetic Operators

Example

float a = 31/3;
a = 10.3

float b = 31%3;
b = 1.00

int c = 31/3;
c = 10

int d = 31%3;
d = 1

1. Arithmetic Operators

Example: What is the output?

#include<iostream.h>
void main()
{ float sum = 0 ;
cout<< “ the value of sum is initially set to “ <<
sum<<endl;
sum = sum + 98 ;
cout<<”sum is now: “ << sum << endl ;
sum = sum – 70 ;
cout<<” sum is now: “ << sum<< endl ;
sum = sum * 20 ;
cout<<”sum is now : “ <<sum<<endl;
sum= sum / 6 ;
cout<<”sum is now:”<<sum<<endl;
sum=sum%3 ;
cout<<”sum is now:”<<sum<<endl;
}

1. Arithmetic Operators

Operator precedence

• Some arithmetic operators act before others
(i.e., multiplication before addition)

 Be sure to use parenthesis when needed

• Example:

Find the average of three variables a, b and c
 Do not use: a + b + c / 3

 Use: (a + b + c) / 3

1. Arithmetic Operators

• Rules of operator precedence:

Operator(s) Operation(s) Order of evaluation (precedence)

() Parentheses Evaluated first. If the parentheses are

nested, the expression in the innermost pair

is evaluated first. If there are several pairs

of parentheses “on the same level” (i.e., not

nested), they are evaluated left to right.

*, /, or % Multiplication

Division

Modulus

Evaluated second. If there are several, they

are evaluated left to right.

+ or - Addition

Subtraction

Evaluated last. If there are several, they are

evaluated left to right.

Operator precedence

1. Arithmetic Operators

Example: What is the output?

#include<iostream.h>
void main()
{

float a, b, c, d ;
a = 8 + 2 * 3 ;
b = (5 * 2 – 3) / 6;
c = 5 * 2 – 3 / 6;
d = 4 + 2 / 4 * 8;

cout << “a=”<< a<<endl << “b=”<<
b<<endl;
cout << “c=”<< c<<endl << “d=”<<
d<<endl;
}

1. Arithmetic Operators
Example: Calculate the average of three numbers

#include<iostream.h>
void main()
{

float avg, grade1, grade2, grade3 ;
grade1 = 8.5; grade2 = 12.0 ; grade3 = 9.0;
avg = grade1 + grade2 + grade3 / 3.0;

cout<<”the average is”
<<setprecision(1)<<avg;
}

avg = (grade1 + grade2 + grade3)/3.0 ;

2. Accumulation/Assignment Operators

• Assignment expression abbreviations

c = c + 3; can be abbreviated as c += 3;

using the addition assignment operator

• Statements of the form

variable = variable operator expression;

can be rewritten as

variable operator= expression;

2. Accumulation/Assignment Operators

AlternativeExpression Operator
sum += 10 ;sum = sum + 10 ;+ =

score – = 22 ;score = score – 22 ;- =

x *= z;x = x * z;* =

x /= y;x = x / y;/ =

x %= y;x = x % y;% =

3. Incremental/ Decremental Operators

AlternativeExpression Operator

i++ Or ++ii = i +1Incremental

i-- Or --ii = i - 1Decremental

3. Incremental/ Decremental Operators

• Preincrement
- When the operator is used before the variable (++c or –-c)

- Variable is changed, then the expression it is in is evaluated.

• Posincrement
- When the operator is used after the variable (c++ or c--)

- Expression the variable is in executes, then the variable is changed.

• Example:
If c = 5, then

-cout << ++c; prints out 6 (c is changed before cout is executed)

-cout << c++; prints out 5 (cout is executed before the increment.
c now has the value of 6)

3. Incremental/ Decremental Operators

• When Variable is not in an expression

- Preincrementing and postincrementing have
the same effect.

++c;

cout << c;

and

c++;

cout << c;

have the same effect.

4. Equality/Relational Operators

Standard a lgebra ic

equa lity opera tor or

rela tiona l opera tor

C++ equa lity

or rela tiona l

opera tor

Examp le

of C++

cond ition

Meaning of

C++ cond ition

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

 >= x >= y x is greater than or equal to y

 <= x <= y x is less than or equal to y

Equality operators

= == x == y x is equal to y

 != x != y x is not equal to y

 2000 Prentice Hall, Inc. All rights
reserved.

Outline

16

1. Load <iostream>

2. main

2.1 Initialize num1 and

num2

2.1.1 Input data

2.2 if statements

1 // Fig. 1.14: fig01_14.cpp

2 // Using if statements, relational

3 // operators, and equality operators

4 #include <iostream>

5

6 using std::cout; // program uses cout

7 using std::cin; // program uses cin

8 using std::endl; // program uses endl

9

10 int main()

11 {

12 int num1, num2;

13

14 cout << "Enter two integers, and I will tell you\n"

15 << "the relationships they satisfy: ";

16 cin >> num1 >> num2; // read two integers

17

18 if (num1 == num2)

19 cout << num1 << " is equal to " << num2 << endl;

20

21 if (num1 != num2)

22 cout << num1 << " is not equal to " << num2 << endl;

23

24 if (num1 < num2)

25 cout << num1 << " is less than " << num2 << endl;

26

27 if (num1 > num2)

28 cout << num1 << " is greater than " << num2 << endl;

29

30 if (num1 <= num2)

31 cout << num1 << " is less than or equal to "

32 << num2 << endl;

33

The if statements test the
truth of the condition. If it is
true, body of if statement is
executed. If not, body is
skipped.
To include multiple statements
in a body, delineate them with
braces {}.

Enter two integers, and I will

tell you

the relationships they satisfy:

3 7

3 is not equal to 7

3 is less than 7

3 is less than or equal to

Notice the using statements.

 2000 Prentice Hall, Inc. All rights
reserved.

Outline

17

2.3 exit (return 0)

Program Output

34 if (num1 >= num2)

35 cout << num1 << " is greater than or

equal to "36 << num2 << endl;

37

38 return 0; // indicate that program ended

successfully39}

Enter two integers, and I will tell you

the relationships they satisfy: 3 7

3 is not equal to 7

3 is less than 7

3 is less than or equal to 7

Enter two integers, and I will tell you

the relationships they satisfy: 22 12

22 is not equal to 12

22 is greater than 12

22 is greater than or equal to 12

Enter two integers, and I will tell you

the relationships they satisfy: 7 7

7 is equal to 7

7 is less than or equal to 7

7 is greater than or equal to 7

5. Logical Operators

ExampleMeaningOperator
If(x > y && x<= 20)AND&&

If(x>y || x< 30)OR||

If(! x)NOT!

5. Logical Operators

• && (logical AND)
- Returns true if both conditions are true

• || (logical OR)
- Returns true if either of its conditions are true

• ! (logical NOT, logical negation)
- Reverses the truth/falsity of its condition

- Returns true when its condition is false

I- s a unary operator, only takes one condition

• Logical operators used as conditions in loops

5. Logical Operators
Truth Tables

! AA

FT

TF

A | | B BA

TTT

TFT

TTF

FFF

A &&BBA

TTT

FFT

FTF

FFF

AND Gate OR Gate

NOT Gate

5. Logical Operators
Example

• Given int i=3, k=5, j=0, m=-2;

• Evaluate:

o (0 < i) && (i < 5)

o (i > k) || (j < i)

o ! (k > 0)

o i+j < k

o (i < 0) && (j < 7)

o (i < k) || (j < 7)

o (m > k) || (j > 0)

o 3*i – 4/k < 2

5. Logical Operators
Example: What is the output?

• Given int i=4;

• Evaluate:

cout << (14+4*4 < 5*(4+3)- ++i);

14+16 < 5*7 – ++i

30 < 35 - 5

30 < 30

cout << (14+4*4 > 5*(4+3) – i++ -1)

14+16 > 5*7 – i++ - 1

30 > 35 - 4 - 1

30 > 30

5. Logical Operators

• C++ is very economical when evaluating Boolean expression.

• Therefore, if in the evaluation of a compound Boolean
expression, the computer can determine the value of the whole
expression without any further evaluation, it does so. This called
short circuiting.

 (True || expression) ------------- True
 (False && expression) ------------- False

Example:
Given: int A = 17, B = 65, C = 21, D = 19;

(13 < = A) || (A < = 19)
(D > = C) && (B > = C)
! (C < = B) && ! (D < = C)

Short Circuiting

6. Confusing Equality (==) and
Assignment (=) Operators

• These errors are damaging because they do not
ordinarily cause syntax errors.

- Recall that any expression that produces a value can be used in
control structures. Nonzero values are true, and zero values are
false

• Example:
if (payCode == 4)

cout << "You get a bonus!" << endl;

- Checks the paycode, and if it is 4 then a bonus is awarded

• If == was replaced with =
if (payCode = 4)

cout << "You get a bonus!" << endl;

- Sets paycode to 4

- 4 is nonzero, so the expression is true and a bonus is awarded,
regardless of paycode.

6. Confusing Equality (==) and
Assignment (=) Operators

• Lvalues
Expressions that can appear on the left side of an equation

Their values can be changed

Variable names are a common example (as in x = 4;)

• Rvalues
Expressions that can only appear on the right side of an equation

Constants, such as numbers (i.e. you cannot write 4 = x;)

• Lvalues can be used as rvalues, but not vice versa

