THE OPERATORS

Dr. Shady Yehia Elmashad

Outline

1.

2.

3.

Arithmetic Operators

Accumulation Operators
Incremental/ Decremental Operators
Equality/Relational Operators
Logical Operators

Confusing Equality (==) and Assignment (=) Operators

contoso

1. Arithmetic Operators

Operator

Addition
Subtraction
Negation
Multiplication
Division

Modulus

Symbol

%

Action

Adds operands

Subs second from first
Negates operand
Multiplies operands
Divides first by second
(integer quotient)
Remainder of divide op

Example

X+Yy
X-y
-X

X*y
x/y

X%y

contoso

1. Arithmetic Operators
Example

float a=31/3;
a=10.3

float b =31%3;
b=1.00

int c¢=31/3;
c=10

int d=31%3;
d=1

1. Arithmetic Operators

Example: What is the output?

#include<iostream.h>

void main()

{ float sum=0;

cout<< “ the value of sum is initially set to “ <<
sum<<endl;

sum =sum + 98 ;

cout<<”sum is now: “ << sum << end| ;
sum=sum—70;

cout<<” sum is now: “ << sum<< endl ;
sum =sum * 20 ;

cout<<”sum is now : “ <<sum<<endl;
sum=sum/6;

cout<<”sum is now:”<<sum<<end]l;
sum=sum%3 ;

cout<<”sum is now:”<<sum<<end]l;

}

contoso

1. Arithmetic Operators

Operator precedence

 Some arithmetic operators act before others
(i.e., multiplication before addition)

» Be sure to use parenthesis when needed

e Example:

Find the average of three variables a, b and c
»Donotuse: a + b + ¢/ 3
>»Use: (@a+b+c) / 3

1. Arithmetic Operators

Operator precedence

* Rules of operator precedence:

Operator(s) Operation(s) Order of evaluation (precedence)
() Parentheses |Evaluated first. If the parentheses are
nested, the expression in the innermost pair
Is evaluated first. If there are several pairs
of parentheses “on the same level” (i.e., not
nested), they are evaluated left to right.
x /,0r% Multiplication |Evaluated second. If there are several, they
Division are evaluated left to right.
Modulus
+0r - Addition Evaluated last. If there are several, they are
Subtraction |evaluated left to right.

contoso

1. Arithmetic Operators

Example: What is the output?

#include<iostream.h>

void main()

{
float a,b,c,d;
a=8+2%*3;
b=(5*2-3)/6;
c=5*2-3/6;
d=4+2/4*8;

cout << “a="<< a<<end| << “b="<<

b<<endl;

cout << “c="<< c<<endl| << “d="<<

d<<endl;

!

1. Arithmetic Operators

Example: Calculate the average of three numbers

#include<iostream.h>
void main()
{
float avg, gradel, grade2, grade3 ;
gradel =8.5; grade2=12.0; grade3 =9.0;
avg = gradel + grade2 + grade3 / 3.0;
cout<<”the average is”
<<setprecision(1l)<<avg;

}

avg = (gradel + grade2 + grade3)/3.0;

contoso

2. Accumulation/Assignment Operators

* Assignment expression abbreviations
c = ¢ + 3; canbeabbreviatedasc += 3;

using the addition assignment operator

* Statements of the form
variable = variable operator expression;

can be rewritten as
variable operator= expression;

2. Accumulation/Assignment Operators

Operator _Expression __ Alternative

sum=sum + 10 ; sum += 10 ;

- = score =score— 22 ; score—=22;
= x=x%* z X *= z;
= x=x/y; X /=y;
% = X=X%Yy; X %=Y;

3. Incremental/ Decremental Operators

_Operator | Expression | Alternative

Incremental i=i+1 i++ Or ++i

Decremental i=i-1 I-- Or --I

3. Incremental/ Decremental Operators

* Preincrement

- When the operator is used before the variable (++c or —-c)
- Variable is changed, then the expression it is in is evaluated.

e Posincrement

- When the operator is used after the variable (c++ or c--)
- Expression the variable is in executes, then the variable is changed.

e Example:
If ¢ = 5, then

—cout << ++c; prints out 6 (cis changed before cout is executed)

—cout << c++; prints out 5 (cout is executed before the increment.
c now has the value of 6)

contoso

3. Incremental/ Decremental Operators

* When Variable is not in an expression

- Preincrementing and postincrementing have
the same effect.

++C;

cout << c¢c;
and

c++;

cout << c;

have the same effect.

4. Equality/Relational Operators

Sandard algebraic C++ equality |[Example Meaning of
equality operatoror |orrelational of C++ C++ condition
relational operator operator condition
Relational operators
> > X >y x 1s greater than y
< < x <y x is less than y
> >= X >=y x 1s greater than or equal to y
< <= X <=y x 1s less than or equal to y
Equality operators
- == X == x 1s equal to y
E x I= x isnot equal to y

+

contoso

O 0 J4 o U W N R

W W W W N NDNNDNNNDNNDNNDNNDNNDNRRLRR R R R B B pop
W N B O ©W ® 9 68 U & W N B © © ® 4 oo U & W N B O

// Fig. 1.14: £ig0l_14.cpp

// Using if statements, relational

// operators, and equality operators

#include <iostream>

using std::cout; // program uses cout

using std::cin; // program uses cin
-

A
v

Qutline

1. Load <iostream>

using std::endl; // program uses endl

int main()
{
int numl, num2;

cout << "Enter two integers, and I will tell you\n"

<< "the relationships they satisfy: ";

cin >> numl >> num2;

if (numl == num2)

cout << numl << "

if (numl '= num2)

cout << numl << "

if (numl < num2)

cout << numl << "

if (numl > num2)

cout << numl << "

if (numl <= num2)

cout << numl << "

<< num2 << endl;

is

is

is

is

is

// read two integer

@M Q¥ SaktStHest the

3 7

not equal to " << num2 << endl;

less than " << num2 << endl;

greater than " << num2 << endl;

less than or equal to "

Notice the using statements.

2. main

2.1 Initialize numl and
num?2

2.1.1 Input data

tatements

truth of the condition. Ifitis

ement j
m. teor] 9
. , is
skipped.

aterments
in a body, delineate them with
braces {}.

|3 is less than or equal

16

34 if (numl >= num2) A Outline

35 cout << numl << " is greater than or \V4 E—

36 << num2 << endl;

37 2.3 exit (return 0)
38 return O0; // indicate that program ended

39}

Program Output

3 is less than or equal to 7

reater than or e

7 is greater than or equal to 7

17

© 2000 Prentice Hall, Inc. All rights

5. Logical Operators

Operator Meaning Example
&& AND If(x >y && x<=20)
| | OR If(x>y || x<30)
! NOT If(! x)

5. Logical Operators

&& (logical AND)
- Returns true if both conditions are true

| | (logical OR)

- Returns true if either of its conditions are true

! (logical NOT, logical negation)
- Reverses the truth/falsity of its condition
- Returns true when its condition is false
I- s a unary operator, only takes one condition

* Logical operators used as conditions in loops

contoso

5. Logical Operators

Truth Tables
AND Gate OR Gate
A | B | Aszs NN A | B | AllB
T T T T T T
T F F T F T
F T F F T T
F F F F F F
NOT Gate
T F
F T

5. Logical Operators

Example

* Given int i=3, k=5, j=0, m=-2;

 Evaluate:

o (0 < i) && (i < 5)
o (i >k) |l (F < i)
o ! (k > 0)

o i+j < k

o (1<0) & (3 <7)
o (i<k) |l (3<T7)
o (m>%k) || (j>0)
o 3*i - 4/k < 2

5. Logical Operators

Example: What is the output?

* Given int 1i=4;

* Evaluate:

cout << (14+4*4 < 5* (443)- ++1i) ;
14+16 < 5*7 — ++1
30 < 35 -5
30 < 30

cout << (14+4*4 > 5*(4+43) - i++ -1)
14+16 > 5*%7 - i4++ - 1
30 > 35 - 4 -1
30 > 30

contoso

5. Logical Operators

Short Circuiting

e C++ is very economical when evaluating Boolean expression.

* Therefore, if in the evaluation of a compound Boolean
expression, the computer can determine the value of the whole
expression without any further evaluation, it does so. This called
short circuiting.

» (True || expression) — ------m-m-m—- True
» (False && expression) — -------—--—-- False
Example:

Given: int A=17, B=65,C=21,D=19;
(13<=A) || (A<=19)

(D>=C) && (B>=C)
I(C<=B) && !(D<=C)

contoso

6. Confusing Equality (==) and

Assignment (=) Operators

* These errors are damaging because they do not

ordinarily cause syntax errors.

- Recall that any expression that produces a value can be used in
control structures. Nonzero values are true, and zero values are
false

« Example:
if (payCode == 4)
cout << "You get a bonus!" << endl;
- Checks the paycode, and if it is 4 then a bonus is awarded

* If == was replaced with =
if (payCode = 4)
cout << "You get a bonus!" << endl;
- Sets paycode to 4

- 4 is nonzero, so the expression is true and a bonus is awarded,
regardless of paycode. contoso

Y‘

6. Confusing Equality (==) and

Assignment (=) Operators

. Lvalues

Expressions that can appear on the left side of an equation
Their values can be changed
Variable names are a common example (asinx = 4;)

* Rvalues

Expressions that can only appear on the right side of an equation
Constants, such as numbers (i.e. you cannot write 4 = x;)

e Lvalues can be used as rvalues, but not vice versa

contoso

